Go Back   Honda-Tech > Honda and Acura Technical Forums > Engine Management and Tuning
Sign in using an external account
Register Forgot Password?
Search


Welcome to Honda-Tech!
Welcome to Honda-Tech.com.

You are currently viewing our forums as a guest, which gives you limited access to view most discussions and access our other features. By joining our community you will have access to post topics, communicate privately with other members (PM), respond to polls, upload content and access many other special features. Registration is fast, simple and absolutely free so please, join the Honda-Tech community today!


Reply
 
 
 
submit to reddit
 
Thread Tools Search this Thread
Old 11-21-2009, 04:29 PM   #1
kpjo4
Honda-Tech Member
Garage is empty, add now
 
kpjo4's Avatar
 
Join Date: Jul 2008
Location: killeen, tx, USA
Posts: 221
iTrader Rating: (0)
Send a message via AIM to kpjo4
Default Exhaust back pressure

So i've been reading up a bit and inquired some entries of people saying "you need some backpressure so you don't loose performance", and others saying "just run straight pipe, or no piping".

Where does the truth lie at =[
kpjo4 is offline   Reply With Quote
Old 11-21-2009, 05:56 PM   #2
jonbar87
Honda-Tech Member
Garage is empty, add now
 
jonbar87's Avatar
 
Join Date: Apr 2008
Location: Little Rock, AR, USA
Posts: 90
iTrader Rating: (0)
Send a message via AIM to jonbar87
Default Re: Exhaust back pressure

Backpressure: The myth and why it's wrong.

I. Introduction

One of the most misunderstood concepts in exhaust theory is backpressure. People love to talk about backpressure on message boards with no real understanding of what it is and what it's consequences are. I'm sure many of you have heard or read the phrase "Hondas need backpressure" when discussing exhaust upgrades. That phrase is in fact completely inaccurate and a wholly misguided notion.

II. Some basic exhaust theory

Your exhaust system is designed to evacuate gases from the combustion chamber quickly and efficently. Exhaust gases are not produced in a smooth stream; exhaust gases originate in pulses. A 4 cylinder motor will have 4 distinct pulses per complete engine cycle, a 6 cylinder has 6 pules and so on. The more pulses that are produced, the more continuous the exhaust flow. Backpressure can be loosely defined as the resistance to positive flow - in this case, the resistance to positive flow of the exhaust stream.

III. Backpressure and velocity

Some people operate under the misguided notion that wider pipes are more effective at clearing the combustion chamber than narrower pipes. It's not hard to see how this misconception is appealing - wider pipes have the capability to flow more than narrower pipes. So if they have the ability to flow more, why isn't "wider is better" a good rule of thumb for exhaust upgrading? In a word - VELOCITY. I'm sure that all of you have at one time used a garden hose w/o a spray nozzle on it. If you let the water just run unrestricted out of the house it flows at a rather slow rate. However, if you take your finger and cover part of the opening, the water will flow out at a much much faster rate.

The astute exhaust designer knows that you must balance flow capacity with velocity. You want the exhaust gases to exit the chamber and speed along at the highest velocity possible - you want a FAST exhaust stream. If you have two exhaust pulses of equal volume, one in a 2" pipe and one in a 3" pipe, the pulse in the 2" pipe will be traveling considerably FASTER than the pulse in the 3" pipe. While it is true that the narrower the pipe, the higher the velocity of the exiting gases, you want make sure the pipe is wide enough so that there is as little backpressure as possible while maintaining suitable exhaust gas velocity. Backpressure in it's most extreme form can lead to reversion of the exhaust stream - that is to say the exhaust flows backwards, which is not good. The trick is to have a pipe that that is as narrow as possible while having as close to zero backpressure as possible at the RPM range you want your power band to be located at. Exhaust pipe diameters are best suited to a particular RPM range. A smaller pipe diameter will produce higher exhaust velocities at a lower RPM but create unacceptably high amounts of backpressure at high rpm. Thus if your powerband is located 2-3000 RPM you'd want a narrower pipe than if your powerband is located at 8-9000RPM.

Many engineers try to work around the RPM specific nature of pipe diameters by using setups that are capable of creating a similar effect as a change in pipe diameter on the fly. The most advanced is Ferrari's which consists of two exhaust paths after the header - at low RPM only one path is open to maintain exhaust velocity, but as RPM climbs and exhaust volume increases, the second path is opened to curb backpressure - since there is greater exhaust volume there is no loss in flow velocity. BMW and Nissan use a simpler and less effective method - there is a single exhaust path to the muffler; the muffler has two paths; one path is closed at low RPM but both are open at high RPM.

IV. So how did this myth come to be?

I often wonder how the myth "Hondas need backpressure" came to be. Mostly I believe it is a misunderstanding of what is going on with the exhaust stream as pipe diameters change. For instance, someone with a civic decides he's going to uprade his exhaust with a 3" diameter piping. Once it's installed the owner notices that he seems to have lost a good bit of power throughout the powerband. He makes the connections in the following manner: "My wider exhaust eliminated all backpressure but I lost power, therefore the motor must need some backpressure in order to make power." What he did not realize is that he killed off all his flow velocity by using such a ridiculously wide pipe. It would have been possible for him to achieve close to zero backpressure with a much narrower pipe - in that way he would not have lost all his flow velocity.

V. So why is exhaust velocity so important?

The faster an exhaust pulse moves, the better it can scavenge out all of the spent gasses during valve overlap. The guiding principles of exhaust pulse scavenging are a bit beyond the scope of this doc but the general idea is a fast moving pulse creates a low pressure area behind it. This low pressure area acts as a vacuum and draws along the air behind it. A similar example would be a vehicle traveling at a high rate of speed on a dusty road. There is a low pressure area immediately behind the moving vehicle - dust particles get sucked into this low pressure area causing it to collect on the back of the vehicle. This effect is most noticeable on vans and hatchbacks which tend to create large trailing low pressure areas - giving rise to the numerous "wash me please" messages written in the thickly collected dust on the rear door(s).

VI. Conclusion.

SO it turns out that Hondas don't need backpressure, they need as high a flow velocity as possible with as little backpressure as possible.
__________________
Is this the beginning of change...? Or the end of capitalism...
jonbar87 is offline   Reply With Quote
Old 11-21-2009, 06:28 PM   #3
kpjo4
Honda-Tech Member
Garage is empty, add now
 
kpjo4's Avatar
 
Join Date: Jul 2008
Location: killeen, tx, USA
Posts: 221
iTrader Rating: (0)
Send a message via AIM to kpjo4
Default Re: Exhaust back pressure

damn... nicely done!!

love it =]

lol btw my cat converter rusted off the exhaust system so basically after the flex pipe, there is nothing... so that explains why i'm feeling sluggish... no velocity cuz of too much volume. Thankyou so much
kpjo4 is offline   Reply With Quote
Old 11-21-2009, 11:37 PM   #4
q16racer
B*a*n*n*e*d
Garage is empty, add now
 
Join Date: Nov 2009
Location: Pensacola, FL
Posts: 1,538
iTrader Rating: (0)
Default Re: Exhaust back pressure

Quote:
Originally Posted by jonbar87 View Post
Backpressure: The myth and why it's wrong.

I. Introduction

One of the most misunderstood concepts in exhaust theory is backpressure. People love to talk about backpressure on message boards with no real understanding of what it is and what it's consequences are. I'm sure many of you have heard or read the phrase "Hondas need backpressure" when discussing exhaust upgrades. That phrase is in fact completely inaccurate and a wholly misguided notion.

II. Some basic exhaust theory

Your exhaust system is designed to evacuate gases from the combustion chamber quickly and efficently. Exhaust gases are not produced in a smooth stream; exhaust gases originate in pulses. A 4 cylinder motor will have 4 distinct pulses per complete engine cycle, a 6 cylinder has 6 pules and so on. The more pulses that are produced, the more continuous the exhaust flow. Backpressure can be loosely defined as the resistance to positive flow - in this case, the resistance to positive flow of the exhaust stream.

III. Backpressure and velocity

Some people operate under the misguided notion that wider pipes are more effective at clearing the combustion chamber than narrower pipes. It's not hard to see how this misconception is appealing - wider pipes have the capability to flow more than narrower pipes. So if they have the ability to flow more, why isn't "wider is better" a good rule of thumb for exhaust upgrading? In a word - VELOCITY. I'm sure that all of you have at one time used a garden hose w/o a spray nozzle on it. If you let the water just run unrestricted out of the house it flows at a rather slow rate. However, if you take your finger and cover part of the opening, the water will flow out at a much much faster rate.

The astute exhaust designer knows that you must balance flow capacity with velocity. You want the exhaust gases to exit the chamber and speed along at the highest velocity possible - you want a FAST exhaust stream. If you have two exhaust pulses of equal volume, one in a 2" pipe and one in a 3" pipe, the pulse in the 2" pipe will be traveling considerably FASTER than the pulse in the 3" pipe. While it is true that the narrower the pipe, the higher the velocity of the exiting gases, you want make sure the pipe is wide enough so that there is as little backpressure as possible while maintaining suitable exhaust gas velocity. Backpressure in it's most extreme form can lead to reversion of the exhaust stream - that is to say the exhaust flows backwards, which is not good. The trick is to have a pipe that that is as narrow as possible while having as close to zero backpressure as possible at the RPM range you want your power band to be located at. Exhaust pipe diameters are best suited to a particular RPM range. A smaller pipe diameter will produce higher exhaust velocities at a lower RPM but create unacceptably high amounts of backpressure at high rpm. Thus if your powerband is located 2-3000 RPM you'd want a narrower pipe than if your powerband is located at 8-9000RPM.

Many engineers try to work around the RPM specific nature of pipe diameters by using setups that are capable of creating a similar effect as a change in pipe diameter on the fly. The most advanced is Ferrari's which consists of two exhaust paths after the header - at low RPM only one path is open to maintain exhaust velocity, but as RPM climbs and exhaust volume increases, the second path is opened to curb backpressure - since there is greater exhaust volume there is no loss in flow velocity. BMW and Nissan use a simpler and less effective method - there is a single exhaust path to the muffler; the muffler has two paths; one path is closed at low RPM but both are open at high RPM.

IV. So how did this myth come to be?

I often wonder how the myth "Hondas need backpressure" came to be. Mostly I believe it is a misunderstanding of what is going on with the exhaust stream as pipe diameters change. For instance, someone with a civic decides he's going to uprade his exhaust with a 3" diameter piping. Once it's installed the owner notices that he seems to have lost a good bit of power throughout the powerband. He makes the connections in the following manner: "My wider exhaust eliminated all backpressure but I lost power, therefore the motor must need some backpressure in order to make power." What he did not realize is that he killed off all his flow velocity by using such a ridiculously wide pipe. It would have been possible for him to achieve close to zero backpressure with a much narrower pipe - in that way he would not have lost all his flow velocity.

V. So why is exhaust velocity so important?

The faster an exhaust pulse moves, the better it can scavenge out all of the spent gasses during valve overlap. The guiding principles of exhaust pulse scavenging are a bit beyond the scope of this doc but the general idea is a fast moving pulse creates a low pressure area behind it. This low pressure area acts as a vacuum and draws along the air behind it. A similar example would be a vehicle traveling at a high rate of speed on a dusty road. There is a low pressure area immediately behind the moving vehicle - dust particles get sucked into this low pressure area causing it to collect on the back of the vehicle. This effect is most noticeable on vans and hatchbacks which tend to create large trailing low pressure areas - giving rise to the numerous "wash me please" messages written in the thickly collected dust on the rear door(s).

VI. Conclusion.

SO it turns out that Hondas don't need backpressure, they need as high a flow velocity as possible with as little backpressure as possible.
where did you get that from?
________
LAMBORGHINI PORTOFINO SPECIFICATIONS

Last edited by q16racer; 03-13-2011 at 04:14 PM.
q16racer is offline   Reply With Quote
 
 
 
submit to reddit
Reply

Tags
back, backpressure, cylinder, exhaust, exit, explain, good, honda, motor, particles, pipe, pressure, single, sucking, theory

Thread Tools Search this Thread
Search this Thread:

Advanced Search

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump



All times are GMT -8. The time now is 03:09 AM.



2008 Copyright, InternetBrands Inc.
Powered by vBulletin® Version 3.7.4
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.

Honda and the Honda marquee are registered trademarks of the American Honda Motor Company, Inc. Neither American Honda Motor Company nor its subsidiaries or affiliates shall bear any responsibility for Honda-Tech.com content, comments, or advertising. Honda-Tech.com is not affiliated with American Honda Motor Company in any way. American Honda Motor Company does not sponsor, support, or endorse Honda-Tech.com in any way. Copyright/trademark/sales mark infringements are not intended or implied.
Emails & Contact Details